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A Combinatorial Theorem in Group Theory* 

By E. G. Straus 

To D. H. Lehmer on his 70th birthday 

Abstract. There is an anti-Ramsey theorem for inhomogeneous linear equations over a 
field, which is essentially due to R. Rado [21. This theorem is generalized to groups to 
get sharper quantitative and qualitative results. For example, it is shown that for any 
Abelian group A (written additively) and any mappings fl, 

- - - , fn of A into itself 
there exists a k-coloring X of A so that the inhomogeneous equation 

n 
z (fj(xl)-fi(yi)) = b, b = O 

i= 1 

has no solutions xi, yi with x (xi) x (yi) for all i = 1, *- * , n. Here the number 
of colors k can be chosen bounded by (3n)n-1 which depends on n alone and not 
on the fi or b. For non-Abelian groups an analogous qualitative result is proven when 
b is "residually compact". Applications to anti-Ramsey results in Euclidean geometry 
are given. 

1. Introduction. Richard Rado [2] has shown that for certain fields F it is 
possible to color the elements of F in a finite number of colors so that an inhomo- 
geneous equation 

n 
(1.1) E ~~~aixi = b; a,, b G F,b 0 0, I:ai = 

i=l 

has no solution (xl, - - , xn) where all xi have the same color. This result was 
sharpened and extended to all fields F in [1] where it was used to prove that for any 
set S in a Euclidean space En, with the property that S cannot be isometrically em- 
bedded on a sphere, there is a finite coloring of Hilbert space H so that no set isomet- 
ric to S has all its points of the same color. Sharper results involving the minimal 

number of different colored points in sets isometric to S were also obtained in [1]. 
In this note we recognize Rado's coloring problem to be essentially group theo- 

retic in nature. This enables us to get a simpler and more general theorem than [1, 
Theorem 16] and to get a much better and more uniform estimate on the number of 
colors needed to prevent the existence of a monochromatic copy of a nonspherical set 
S of E" m H. 

2. Formulation of Problems and Definitions. Let G be a group and fiJf2,-- 

fn arbitrary mappings of G into G. Let b E G, b 0 1. 
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Problem 2.1. Under what conditions is there a finite coloring X of G, using k 
colors, so that the equation 

(2.2) fl (x1)fl (Y 1 )f2(X2)f2(Y2)1 ... fn(XnY)fn(Yn1 = b 

has no solution xl, * ,xY,ya, Yn G with X(xi) = X(yi) for all i = 1, 2,* 

n? 
Note that the inhomogeneity condition, b # 1, is essential, since otherwise we 

would always have a system of solutions xi = Yi. Also we are not asking merely to 
prevent solutions where all the variables on the left of (2.2) have the same color, but 
all solutions where only the coupled pairs of variables xi, Yi have the same color. 

Problem 2.3. If Problem 2.1 can be answered in the affirmative what can be said 
about the minimal number, k, of colors needed? In particular, to what extent does k 
depend on the data n, b, fl, * - * fn? 

Let P be any property of groups which is invariant under isomorphisms (that is 
P defines a class of groups). We shall use this concept somewhat informally, such as 
the property "G is compact" to mean that G can be given a group topology under 

which it is compact. 
Definition 2.4. An element b C G is residually P if there is a homomorphism, 

p, of G into a group G with property P so that p(b) / 1. 
The group G is residually P if all its nonidentity elements are residually P. 

The term residually finite is a familiar one, and, for example, all free groups are 

residually finite. An element of G is residually Abelian if and only if it is not an ele- 

ment of the commutator subgroup G'. 

3. Qualitative Results. 
THEOREM 3.1. Let b be a residually compact element of G; then Problem 2.1 

has an affirmative solution and the number of colors, k, has a bound which is indepen- 
dent of the functions fl, * *, fn. _ 

Proof. Let p be a homomorphism of G into the compact group G so that 
b = <(b) + 1. 

We now color G by a coloring X as follows: Pick a neighborhood U of the 
identity in G so that U= U-1 and b W u. Let Ui = Ugi; i = 1, - * ,N, be a 

finite covering of G by translates of U. Now define x(x) to be the least index i 

for which x C Ui. Thus the equation 

n 
(3.2) II Jy~i = b 

i=l1 

has no solution with (Yj) = j-(57), i = 1,*** , n, since that would imply y-i7-1 C 
U and b C (PC contrary to hypothesis. It is clear that the number k of colors in 

X depends only on n and b. 
Nbw define the coloring X on G by 
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(3.3) X(X) = XIY) X(* fi(x)) = x (f0()) (i = 1, - - *, n). 

Then applying the homomorphism ep to a solution of (2.2) we get 
n 

II Tih(Xi (yi)-f = b, 
j= 1 

which has no solution with X(fi(xi)) = (fiC(yi)) (i = 1, - *, n) and hence (2.2) 

has no solution with X (xi) = X (yi) (=1,** n)- 
The number, k, of colors in X is no greater than km, where m is the number 

of distinct functions among fl, - - *, fn. In any case we have k S kn where the 
number on the right is independent of fl,.-. ,* fn . 

We have already mentioned that Theorem 3.1 applies to all b $ 1 in a free 
group, since such groups are residually finite and hence a fortiori residually compact. 
Abelian groups, A, are in general not residually finite, but they are residually compact. 
In fact for every b E A, b # 0, there is a mapping o of A into the circle group 
with ep(b) # 0. 

THEOREM 3.4. Let A be an Abelian group b C A, b # 0. Let B be a maxi- 
mal subgroup of A \ { b 3. Then 

(3.5) A/B-7J Z n= 1,2, ,or oo, 
pfl 

where Zpn denotes the multiplicative group of all pnth roots of unity and Z = 

UnZp n 
The prime p in (3.5) can be chosen to be any divisor of ord b, by a suitable 

choice of B. In particular, if ord b = oo, then p can be chosen arbitrarily. 
Proof. In the group A = A/B every nontrivial subgroup must contain the ele- 

ment b = b + B. Thus b must be of prime order p and A is a p-group in 
which every finitely generated subgroup is cyclic. Thus, if A is finite, it is cyclic of 
order pn; and if A is infinite it is isomorphic to Zp.. 

It is clear that for any p which divides ord b we can choose B to contain 
all elements whose order is prime to p as well as the element pb, so that A is a 

p-group. 
In [1] we constructed an example to show that we cannot extend theorems of 

Rado type to cases where Eq. (1.1) is replaced on the left by a homogeneous 
form of higher degree. The reason for this situation is now clearer, since the nonzero 
elements in the additive group of rationals are residually compact while the analogous 
result does not hold for the ring of rational numbers. We can state an example of the 
general algebraic situation as follows. 

THEOREM 3.6. Let A be an algebraic system with a number of operations. 
Let F(x1,* * , xn) be an expression in A with variables xi,- , x, so that 
F(x, * , x) = a for all x C A. Assume there is a b E A and a homomorphism p 
of A into an algebra A with a compact topology in which all operations are contin- 
uous and b = ep(b) * a- = <(a). 
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Then for any set of mappings fi- - - , fn of A into A there exists a finite 
coloring x of A so that the equation 

(3.7) F(fi (x ), - * X (xn)) = b 

has no solu tion with X (x 1 ) =... = X(xn)- 
Proof It is clear that under the homomorphism ep the expression F becomes 

F(j, - --,5n) with F(x ,-- -,x)=a for all x E A. By continuity there is a 
neighborhood U(xi) for each x E A so that F(x1,.*. , in) + b for all xl, - *, 

Yn C U(x). By the compactness of A there is a finite set {U1,. , UN} of these 
neighborhoods which cover A and we define the coloring X of A by x(x) 

X(j7) if and only if x and T belong to the same elements of {U1,*, UN}. 
Finally we again define the coloring X of A by X (x) = X(y) if and only if 

X(fj(x)) = (fj(y)) for i = 1, * *, n. 
COROLLARY 3.8. Let R be a ring and let M be a maximal ideal so that RIM 

is finite. If b a M, then for any homogeneous form 
n n 

F(xl, ,Xn) =L E E il**-f*ikil .Xik 

there is a finite coloring X of R so that the equation 
F(x1 

X 

X. 

Xn X-Yn) 
- 

b has no solution with X(xi) = X(yi), i = I,- - *, n. 
I have not been able to prove that the converse of Theorem 3.1 holds, however 

we can get a result which comes close to such a converse. 
THEOREM 3.9. Let G be a group and b E G such that for every positive in- 

teger n there exists a finite coloring X of G so that the equation 
n 

n xiy7 =b 
i11 

has no solution with X(x) = x(yd) i= 1,f - n. 
T7hen there exists a homomorphism ep of G onto a group G where G con- 

tains a family S of subsets with the following properties: 
(i) Each S C S has a finite number of translates Sg-, - - - SgN (N depend- 

ing on S) so that Sf, U U SN = G. 
(ii) For each positive integer n there is an S G S so that b sn 

(iii) S=S' for all SCS. 
(iv) nss= {1}. 
Proof We first note that, given any automorphism a of G and any positive 

integer n there exists a finite coloring X,, of G so that the equation 

n 

f Xy-1 = a(b) 
i=1 

has no solution with Xc, (xi) = xc(yi), i = 1,.* , n. This coloring is obtained by 

X(X) = x('- l(x)). By superposition of a finite number of such colorings we get the 
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result that for any finite set A of automorphisms of G and any positive integer n 
there exists a finite coloring XA of G so that 

n 

(3.10) f xiy-1 acx(b) for any a CA 
i=1 

whenever XA (xi)= XA (yi), n. 1, ,n- 
We now restrict attention to finite sets A of inner automorphisms and construct 

finite colorings XnA where Xn2,A2 is a refinement of Xn , Al whenever n2 > n1, 

A2 D Al; and each Xn,A prevents a solution of (3.10) with Xn,A(Xi) = Xn,A(yi). To 

each X -we associate the set 

S(n,A) = {xy IXn, A(X) = X n,A(Y)} 

which we could regard as the set of elements whose color is that of the identity. These 
sets are ordered by inclusion S(n2,A2) CS(n1,A1) if n2 >n1, A2 DA1. They 
all satisfy S = S- 1 and each set has a finite number of translates which cover G. To 
see this let gl, * , gN represent the different colors of Xn,A. Then S = S(n, A) 
satisfies Sgl U ... U SgN = G. By hypothesis b M (S(n, A))n. 

Finally, if a E A then our construction yields 

a-c1(S(n,A)) C S(n,A\{a}). 

Let So =nS(n, A); then S0 is closed under inner automorphisms of G and 
the normal subgroup Go generated by So does not contain b, since no finite prod- 
uct of elements of S0 is equal to b. 

The natural homomorphism G - GIGo = G maps the sets S(n, A) onto a 
family of sets S with the desired properties. 

4. Quantitative Results. For Abelian groups, and hence for residually Abelian 
elements in arbitrary groups, Theorem 3.4 gives us quantitative results which we can 

apply to Euclidean anti-Ramsey results. 
THEOREM 4.1. Let A be an Abelian group and let f1,.*.*, fn be mappings 

of A into A with m (A n) the number of distinct mappings. Let b C A*; then 
there exists a k-coloring X of A so that the equation 

n 

Ej (fi(xi) -f (yi)) = b 
i= 1 

has no solutions with X(xi) = x(yj), where 

[ (2n)m if 2lord b or ord b = oo, 

k = 
2np m where p is the largest prime divisor of ord b, 

I p-1 1 if ord b is odd. 
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Here rxl denotes the smallest integer > x. 
Proof. We perform the homomorphism A A/B used in the proof of Theorem 

3.4 and choose the prime p = 2 if ord b is even or infinite and the largest prime di- 
visor p of ord b if ord b is odd. Theorem 3.4 shows that A = A/B is isomorphic 
to a subgroup of the circle group, or, equivalent of the additive group of rationals 
'(mod 1). By a suitable automorphism we may choose b to be any element of order 
p in A and we therefore choose b = ?2 if p = 2 and b = (p - 1)/(2p) if p >2. 

If we k-color the interval [0, 1) by _X so that each interval [(i - 1)/(2n), i/(2n)), 
i = 1, 2, , 2n, represents one color when p = 2, and so that [(i-l)(p -l)/(2pn), 

min{i(v-1)1(2pn), I}), i = 1, 2, - ,[2np(p-1), represents one color when p > 2 
then x(x) = X(Y) implies Ix - y I < 1/(2n) and Ix - y I <(p - 1)/(2pn), respec- 
tively, so that the equation 

n 

i:zX2 -F1)=b i=l) 

has no solutions with X(xf)d= (l) i= ,* * , n, and k = 2n or E2np/(p -1)1. 
Finally we define the coloring X of A by x(x) = X(y) if and only if 

(fiJ(X)) = x{i(y)), i = 1, - * *, n, so that X is the desired k-coloring with k=km. 
In view of Theorems 13 and 25 of [1] we can now state the following results. 
COROLLARY 4.2. Given a set S of n points which cannot be embedded in a 

sphere, there exists a (2(n -l)) '-coloring X of Hilbert space H by concentric 
spheres (x(x) depends only on the norm llxil) so that no set congruent to S in H 
is monochromatic. 

COROLLARY 4.3. Given a set S of n points which cannot be embedded in 
fewer than I concentric spheres, there exists a sphere-coloring X of Hilbert space 
using no more than 

k = (2(n -1 + l))(n-l+i)S(n ,l-1) 

colors, where S(n, 1 - 1) is the Stirling number, so that every set congruent to S in 
H has at least 1 distinct colors. 

Proof. There are S(n, I - 1) partitions of S into I - 1 nonempty sets Sj, 
* * *, Si_ 1. Since these sets cannot lie on spheres with a common center, it follows 
from [1, Lemma 26] that there is an equation 

I-1 ISjl-i 
(4.4) E E: Cii( lXixi 112- 11Xio 112) b 0 O 

j=1 i=1 

which would have to have solutions X( Ijxijxi2) = x(ilxio 112) for a sphere coloring in 
which each S is monochromatic. The number of terms on the left of (4.4) is 

(ISi I- 1) = n -l + 1 so that by Theorem 4.1 there isa (2(n-l l))n -1 ' -coloring 
which prevents such a solution of (4.4). We get our result by superposition of the 
S(n, I - 1) different colorings. 
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For example if we have 4 collinear points without a center of symmetry, then 

there exists a 167-coloring of H in which every congruent set has at least 3 colors. 
Theorem 4.1 shows that we can get bounds on the number of colors needed to 

prevent monochromatic solutions which depend only on the number n of summands 
and not on the mappings f1 or the element b. We have already shown by the proof 

of [1, Theorem 17] that this dependence on n cannot be removed. It might be in- 
teresting to get precise quantitative results. As an example we give the following 

TIEOREM 4.5. Let X be a coloring of the additive group of integers and let 
N < n be the least common multiple of the first k integers. If 

n 

I (xi-yi) N 

has no solution with X(xi) = X(yi), i = 1, ,n, then X has at least k + I dis- 
tinct colors. 

Proof. If any two of the numbers in {0, 1,* - *, k} have the same color, then 
we can pick x,y so that x(x) = X(y) and 0 <x-y < k. Thus N = m(x-y) 
with m < n. This gives the rather weak result that the number of colors must go to 
infinity at least as rapidly as log n. 
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